Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antioxidants (Basel) ; 11(5)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1847263

ABSTRACT

Understanding the sequelae of COVID-19 is of utmost importance. Neuroinflammation and disturbed redox homeostasis are suggested as prevailing underlying mechanisms in neurological sequelae propagation in long-COVID. We aimed to investigate whether variations in antioxidant genetic profile might be associated with neurological sequelae in long-COVID. Neurological examination and antioxidant genetic profile (SOD2, GPXs and GSTs) determination, as well as, genotype analysis of Nrf2 and ACE2, were conducted on 167 COVID-19 patients. Polymorphisms were determined by the appropriate PCR methods. Only polymorphisms in GSTP1AB and GSTO1 were independently associated with long-COVID manifestations. Indeed, individuals carrying GSTP1 Val or GSTO1 Asp allele exhibited lower odds of long-COVID myalgia development, both independently and in combination. Furthermore, the combined presence of GSTP1 Ile and GSTO1 Ala alleles exhibited cumulative risk regarding long-COVID myalgia in carriers of the combined GPX1 LeuLeu/GPX3 CC genotype. Moreover, individuals carrying combined GSTM1-null/GPX1LeuLeu genotype were more prone to developing long-COVID "brain fog", while this probability further enlarged if the Nrf2 A allele was also present. The fact that certain genetic variants of antioxidant enzymes, independently or in combination, affect the probability of long-COVID manifestations, further emphasizes the involvement of genetic susceptibility when SARS-CoV-2 infection is initiated in the host cells, and also months after.

2.
Redox Rep ; 27(1): 85-91, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1774187

ABSTRACT

Objectives: Due to the role of oxidative stress in the pathophysiology of COVID-19, it is biologically plausible that inter-individual differences in patients' clinical manifestations might be affected by antioxidant genetic profile. The aim of our study was to assess the distribution of antioxidant genetic polymorphisms Nrf2 rs6721961, SOD2 rs4880, GPX1 rs1050450, GPX3 rs8177412, and GSTP1 (rs1695 and rs1138272) haplotype in COVID-19 patients and controls, with special emphasis on their association with laboratory biochemical parameters.Methods: The antioxidant genetic polymorphisms were assessed by appropriate PCR methods in 229 COVID-19 patients and 229 matched healthy individuals.Results: Among examined polymorphisms, only GSTP1 haplotype was associated with COVID-19 risk (p = 0.009). Polymorphisms of SOD2 and GPX1 influenced COVID-19 patients' laboratory biochemical profile: SOD2*Val allele was associated with increased levels of fibrinogen (p = 0.040) and ferritin (p = 0.033), whereas GPX1*Leu allele was associated with D-dimmer (p = 0.009).Discussion: Our findings regarding the influence of SOD2 and GPX1 polymorphisms on inflammation and coagulation parameters might be of clinical importance. If confirmed in larger cohorts, these developments could provide a more personalized approach for better recognition of patients prone to thrombosis and those for the need of targeted antiox-idant therapy.


Subject(s)
COVID-19 , Glutathione Peroxidase , Superoxide Dismutase , Blood Coagulation , COVID-19/enzymology , COVID-19/genetics , Glutathione Peroxidase/genetics , Humans , Inflammation/genetics , Polymorphism, Single Nucleotide , Serbia , Superoxide Dismutase/genetics
3.
J Pers Med ; 12(3)2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1742523

ABSTRACT

Based on the close relationship between dysregulation of redox homeostasis and immune response in SARS-CoV-2 infection, we proposed a possible modifying role of ACE2 and glutathione transferase omega (GSTO) polymorphisms in the individual propensity towards the development of clinical manifestations in COVID-19. The distribution of polymorphisms in ACE2 (rs4646116), GSTO1 (rs4925) and GSTO2 (rs156697) were assessed in 255 COVID-19 patients and 236 matched healthy individuals, emphasizing their individual and haplotype effects on disease development and severity. Polymorphisms were determined by the appropriate qPCR method. The data obtained showed that individuals carrying variant GSTO1*AA and variant GSTO2*GG genotypes exhibit higher odds of COVID-19 development, contrary to ones carrying referent alleles (p = 0.044, p = 0.002, respectively). These findings are confirmed by haplotype analysis. Carriers of H2 haplotype, comprising GSTO1*A and GSTO2*G variant alleles were at 2-fold increased risk of COVID-19 development (p = 0.002). Although ACE2 (rs4646116) polymorphism did not exhibit a statistically significant effect on COVID-19 risk (p = 0.100), the risk of COVID-19 development gradually increased with the presence of each additional risk-associated genotype. Further studies are needed to clarify the specific roles of glutathione transferases omega in innate immune response and vitamin C homeostasis once the SARS-CoV-2 infection is initiated in the host cell.

4.
Front Mol Biosci ; 8: 747493, 2021.
Article in English | MEDLINE | ID: covidwho-1604381

ABSTRACT

Based on the premise that oxidative stress plays an important role in severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection, we speculated that variations in the antioxidant activities of different members of the glutathione S-transferase family of enzymes might modulate individual susceptibility towards development of clinical manifestations in COVID-19. The distribution of polymorphisms in cytosolic glutathione S-transferases GSTA1, GSTM1, GSTM3, GSTP1 (rs1695 and rs1138272), and GSTT1 were assessed in 207 COVID-19 patients and 252 matched healthy individuals, emphasizing their individual and cumulative effect in disease development and severity. GST polymorphisms were determined by appropriate PCR methods. Among six GST polymorphisms analyzed in this study, GSTP1 rs1695 and GSTM3 were found to be associated with COVID-19. Indeed, the data obtained showed that individuals carrying variant GSTP1-Val allele exhibit lower odds of COVID-19 development (p = 0.002), contrary to carriers of variant GSTM3-CC genotype which have higher odds for COVID-19 (p = 0.024). Moreover, combined GSTP1 (rs1138272 and rs1695) and GSTM3 genotype exhibited cumulative risk regarding both COVID-19 occurrence and COVID-19 severity (p = 0.001 and p = 0.025, respectively). Further studies are needed to clarify the exact roles of specific glutathione S-transferases once the SARS-CoV-2 infection is initiated in the host cell.

5.
Antioxidants (Basel) ; 10(7)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1314576

ABSTRACT

Although the original data on systemic oxidative stress in COVID-19 patients have recently started to emerge, we are still far from a complete profile of changes in patients' redox homeostasis. We aimed to assess the extent of oxidative damage of proteins, lipids and DNA during the course of acute disease, as well as their association with CT pulmonary patterns. In order to obtain more insight into the origin of the systemic oxidative stress, the observed parameters were correlated with inflammatory biomarkers and biomarkers of multiorgan impairment. In this prospective study, we included 58 patients admitted between July and October 2020 with COVID-19 pneumonia. Significant changes in malondialdehyde, 8-hydroxy-2'-deoxyguanosine and advanced oxidation protein products levels exist during the course of COVID-19. Special emphasis should be placed on the fact that the pattern of changes differs between non-hospitalized and hospitalized individuals. Our results point to the time-dependent relation of oxidative stress parameters with inflammatory and multiorgan impairment biomarkers, as well as pulmonary patterns in COVID-19 pneumonia patients. Correlation between redox biomarkers and immunological or multiorgan impairment biomarkers, as well as pulmonary CT pattern, confirms the suggested involvement of neutrophils networks, IL-6 production, along with different organ/tissue involvement in systemic oxidative stress in COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL